Analysis flowΒΆ
Here, weβll track typical data transformations like subsetting that occur during analysis.
If exploring more generally, read this first: Project flow.
# !pip install 'lamindb[jupyter,bionty]'
!lamin init --storage ./analysis-usecase --schema bionty
Show code cell output
π‘ connected lamindb: testuser1/analysis-usecase
import lamindb as ln
import bionty as bt
from lamin_utils import logger
π‘ connected lamindb: testuser1/analysis-usecase
Register an initial datasetΒΆ
Here we register an initial artifact with a pipeline script register_example_file.py.
!python analysis-flow-scripts/register_example_file.py
Show code cell output
π‘ connected lamindb: testuser1/analysis-usecase
π‘ created Transform('K4wsS5DTYdFp0000') & created Run('2024-08-16 09:34:19.444014+00:00')
β
added 3 records with Feature.name for columns: 'cell_type', 'tissue', 'disease'
π‘ 1 non-validated categories are not saved in Feature.name: ['cell_type_id']!
β to lookup categories, use lookup().columns
β to save, run add_new_from_columns
π‘ saving labels for 'cell_type'
β
added 3 records from public with CellType.name for cell_type: 'T cell', 'hematopoietic stem cell', 'hepatocyte'
β 1 non-validated categories are not saved in CellType.name: ['my new cell type']!
β to lookup categories, use lookup().cell_type
β to save, run .add_new_from('cell_type')
π‘ saving labels for 'tissue'
π‘ saving labels for 'disease'
β
added 1 record with CellType.name for cell_type: 'my new cell type'
β
created 1 Organism record from Bionty matching name: 'human'
π‘ mapping var_index on Gene.ensembl_gene_id
β found 99 validated terms: ['ENSG00000000003', 'ENSG00000000005', 'ENSG00000000419', 'ENSG00000000457', 'ENSG00000000460', 'ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036', 'ENSG00000001084', 'ENSG00000001167', 'ENSG00000001460', 'ENSG00000001461', 'ENSG00000001497', 'ENSG00000001561', 'ENSG00000001617', 'ENSG00000001626', 'ENSG00000001629', 'ENSG00000001630', 'ENSG00000001631', 'ENSG00000002016', 'ENSG00000002079', 'ENSG00000002330', 'ENSG00000002549', 'ENSG00000002586', 'ENSG00000002587', 'ENSG00000002726', 'ENSG00000002745', 'ENSG00000002746', 'ENSG00000002822', 'ENSG00000002834', 'ENSG00000002919', 'ENSG00000002933', 'ENSG00000003056', 'ENSG00000003096', 'ENSG00000003137', 'ENSG00000003147', 'ENSG00000003249', 'ENSG00000003393', 'ENSG00000003400', 'ENSG00000003402', 'ENSG00000003436', 'ENSG00000003509', 'ENSG00000003756', 'ENSG00000003987', 'ENSG00000003989', 'ENSG00000004059', 'ENSG00000004139', 'ENSG00000004142', 'ENSG00000004399', 'ENSG00000004455', 'ENSG00000004468', 'ENSG00000004478', 'ENSG00000004487', 'ENSG00000004534', 'ENSG00000004660', 'ENSG00000004700', 'ENSG00000004766', 'ENSG00000004776', 'ENSG00000004777', 'ENSG00000004779', 'ENSG00000004799', 'ENSG00000004809', 'ENSG00000004838', 'ENSG00000004846', 'ENSG00000004848', 'ENSG00000004864', 'ENSG00000004866', 'ENSG00000004897', 'ENSG00000004939', 'ENSG00000004948', 'ENSG00000004961', 'ENSG00000004975', 'ENSG00000005001', 'ENSG00000005007', 'ENSG00000005020', 'ENSG00000005022', 'ENSG00000005059', 'ENSG00000005073', 'ENSG00000005075', 'ENSG00000005100', 'ENSG00000005102', 'ENSG00000005108', 'ENSG00000005156', 'ENSG00000005175', 'ENSG00000005187', 'ENSG00000005189', 'ENSG00000005194', 'ENSG00000005206', 'ENSG00000005238', 'ENSG00000005243', 'ENSG00000005249', 'ENSG00000005302', 'ENSG00000005339', 'ENSG00000005379', 'ENSG00000005381', 'ENSG00000005421', 'ENSG00000005436', 'ENSG00000005448', 'ENSG00000005469']
β save terms via .add_validated_from_var_index()
β
var_index is validated against Gene.ensembl_gene_id
β
cell_type is validated against CellType.name
β
tissue is validated against Tissue.name
β
disease is validated against Disease.name
π‘ path content will be copied to default storage upon `save()` with key `None` ('.lamindb/XETSlnalM5QFSrmP7QMn.h5ad')
β
storing artifact 'XETSlnalM5QFSrmP7QMn' at '/home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase/.lamindb/XETSlnalM5QFSrmP7QMn.h5ad'
π‘ parsing feature names of X stored in slot 'var'
β Your Gene registry is empty, consider populating it first!
β use `.import_from_source()` to import records from a source, e.g. a public ontology
β skip linking features to artifact in slot 'var'
π‘ parsing feature names of slot 'obs'
β
3 terms (75.00%) are validated for name
β 1 term (25.00%) is not validated for name: cell_type_id
β
linked: FeatureSet(uid='utGZ8PnUEPbi0JQRemyj', n=3, registry='Feature', hash='CnDArLtFJhjQ8QYJhvBVtw', created_by_id=1, run_id=1)
β
saved 1 feature set for slot: 'obs'
Pull the registered dataset, apply a transformation, and register the resultΒΆ
Track the current notebook:
ln.context.uid = "eNef4Arw8nNM0000"
ln.context.track()
π‘ notebook imports: bionty==0.48.1 lamin_utils==0.13.2 lamindb==0.76.0
π‘ created Transform('eNef4Arw8nNM0000') & created Run('2024-08-16 09:34:37.174056+00:00')
artifact = ln.Artifact.filter(description="anndata with obs").one()
artifact.describe()
Artifact(uid='XETSlnalM5QFSrmP7QMn', is_latest=True, description='anndata with obs', suffix='.h5ad', type='dataset', _accessor='AnnData', size=46992, hash='IJORtcQUSS11QBqD-nTD0A', _hash_type='md5', n_observations=40, visibility=1, _key_is_virtual=True, updated_at='2024-08-16 09:34:36 UTC')
Provenance
.created_by = 'testuser1'
.storage = '/home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase'
.transform = 'register_example_file.py'
.run = '2024-08-16 09:34:19 UTC'
Labels
.tissues = 'kidney', 'liver', 'heart', 'brain'
.cell_types = 'T cell', 'hematopoietic stem cell', 'hepatocyte', 'my new cell type'
.diseases = 'chronic kidney disease', 'liver lymphoma', 'cardiac ventricle disorder', 'Alzheimer disease'
Features
'cell_type' = 'T cell', 'hematopoietic stem cell', 'hepatocyte', 'my new cell type'
'disease' = 'chronic kidney disease', 'liver lymphoma', 'cardiac ventricle disorder', 'Alzheimer disease'
'tissue' = 'kidney', 'liver', 'heart', 'brain'
Feature sets
'obs' = 'cell_type', 'tissue', 'disease'
Get a backed AnnData objectΒΆ
adata = artifact.open()
adata
AnnDataAccessor object with n_obs Γ n_vars = 40 Γ 100
constructed for the AnnData object XETSlnalM5QFSrmP7QMn.h5ad
obs: ['_index', 'cell_type', 'cell_type_id', 'disease', 'tissue']
var: ['_index']
Subset dataset to specific cell types and diseasesΒΆ
cell_types = artifact.cell_types.all().lookup(return_field="name")
diseases = artifact.diseases.all().lookup(return_field="name")
Create the subset:
subset_obs = adata.obs.cell_type.isin(
[cell_types.t_cell, cell_types.hematopoietic_stem_cell]
) & (adata.obs.disease.isin([diseases.liver_lymphoma, diseases.chronic_kidney_disease]))
adata_subset = adata[subset_obs]
adata_subset
AnnDataAccessorSubset object with n_obs Γ n_vars = 20 Γ 100
obs: ['_index', 'cell_type', 'cell_type_id', 'disease', 'tissue']
var: ['_index']
adata_subset.obs[["cell_type", "disease"]].value_counts()
cell_type disease
T cell chronic kidney disease 10
hematopoietic stem cell liver lymphoma 10
Name: count, dtype: int64
Register the subsetted AnnData:
curate = ln.Curate.from_anndata(
adata_subset.to_memory(),
var_index=bt.Gene.ensembl_gene_id,
categoricals={
"cell_type": bt.CellType.name,
"disease": bt.Disease.name,
"tissue": bt.Tissue.name,
},
organism="human"
)
curate.validate()
Show code cell output
π‘ 1 non-validated categories are not saved in Feature.name: ['cell_type_id']!
β to lookup categories, use lookup().columns
β to save, run add_new_from_columns
/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/anndata/_core/anndata.py:1820: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.
utils.warn_names_duplicates("var")
π‘ mapping var_index on Gene.ensembl_gene_id
β found 99 validated terms: ['ENSG00000000003', 'ENSG00000000005', 'ENSG00000000419', 'ENSG00000000457', 'ENSG00000000460', 'ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036', 'ENSG00000001084', 'ENSG00000001167', 'ENSG00000001460', 'ENSG00000001461', 'ENSG00000001497', 'ENSG00000001561', 'ENSG00000001617', 'ENSG00000001626', 'ENSG00000001629', 'ENSG00000001630', 'ENSG00000001631', 'ENSG00000002016', 'ENSG00000002079', 'ENSG00000002330', 'ENSG00000002549', 'ENSG00000002586', 'ENSG00000002587', 'ENSG00000002726', 'ENSG00000002745', 'ENSG00000002746', 'ENSG00000002822', 'ENSG00000002834', 'ENSG00000002919', 'ENSG00000002933', 'ENSG00000003056', 'ENSG00000003096', 'ENSG00000003137', 'ENSG00000003147', 'ENSG00000003249', 'ENSG00000003393', 'ENSG00000003400', 'ENSG00000003402', 'ENSG00000003436', 'ENSG00000003509', 'ENSG00000003756', 'ENSG00000003987', 'ENSG00000003989', 'ENSG00000004059', 'ENSG00000004139', 'ENSG00000004142', 'ENSG00000004399', 'ENSG00000004455', 'ENSG00000004468', 'ENSG00000004478', 'ENSG00000004487', 'ENSG00000004534', 'ENSG00000004660', 'ENSG00000004700', 'ENSG00000004766', 'ENSG00000004776', 'ENSG00000004777', 'ENSG00000004779', 'ENSG00000004799', 'ENSG00000004809', 'ENSG00000004838', 'ENSG00000004846', 'ENSG00000004848', 'ENSG00000004864', 'ENSG00000004866', 'ENSG00000004897', 'ENSG00000004939', 'ENSG00000004948', 'ENSG00000004961', 'ENSG00000004975', 'ENSG00000005001', 'ENSG00000005007', 'ENSG00000005020', 'ENSG00000005022', 'ENSG00000005059', 'ENSG00000005073', 'ENSG00000005075', 'ENSG00000005100', 'ENSG00000005102', 'ENSG00000005108', 'ENSG00000005156', 'ENSG00000005175', 'ENSG00000005187', 'ENSG00000005189', 'ENSG00000005194', 'ENSG00000005206', 'ENSG00000005238', 'ENSG00000005243', 'ENSG00000005249', 'ENSG00000005302', 'ENSG00000005339', 'ENSG00000005379', 'ENSG00000005381', 'ENSG00000005421', 'ENSG00000005436', 'ENSG00000005448', 'ENSG00000005469']
β save terms via .add_validated_from_var_index()
β
var_index is validated against Gene.ensembl_gene_id
β
cell_type is validated against CellType.name
β
disease is validated against Disease.name
β
tissue is validated against Tissue.name
True
artifact = curate.save_artifact(description="anndata with obs subset")
Show code cell output
π‘ path content will be copied to default storage upon `save()` with key `None` ('.lamindb/Ep6xv3ztyEyspQQMx5oj.h5ad')
β
storing artifact 'Ep6xv3ztyEyspQQMx5oj' at '/home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase/.lamindb/Ep6xv3ztyEyspQQMx5oj.h5ad'
π‘ parsing feature names of X stored in slot 'var'
β Your Gene registry is empty, consider populating it first!
β use `.import_from_source()` to import records from a source, e.g. a public ontology
β skip linking features to artifact in slot 'var'
π‘ parsing feature names of slot 'obs'
β
3 terms (75.00%) are validated for name
β 1 term (25.00%) is not validated for name: cell_type_id
β
linked: FeatureSet(uid='utGZ8PnUEPbi0JQRemyj', n=3, registry='Feature', hash='CnDArLtFJhjQ8QYJhvBVtw', created_by_id=1, run_id=1)
artifact.describe()
Artifact(uid='Ep6xv3ztyEyspQQMx5oj', is_latest=True, description='anndata with obs subset', suffix='.h5ad', type='dataset', _accessor='AnnData', size=38992, hash='RgGUx7ndRplZZSmalTAWiw', _hash_type='md5', n_observations=20, visibility=1, _key_is_virtual=True, updated_at='2024-08-16 09:34:42 UTC')
Provenance
.created_by = 'testuser1'
.storage = '/home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase'
.transform = 'Analysis flow'
.run = '2024-08-16 09:34:37 UTC'
Labels
.tissues = 'kidney', 'liver'
.cell_types = 'T cell', 'hematopoietic stem cell'
.diseases = 'chronic kidney disease', 'liver lymphoma'
Features
'cell_type' = 'T cell', 'hematopoietic stem cell'
'disease' = 'chronic kidney disease', 'liver lymphoma'
'tissue' = 'kidney', 'liver'
Feature sets
'obs' = 'cell_type', 'tissue', 'disease'
Examine data flowΒΆ
Query a subsetted .h5ad
artifact containing βhematopoietic stem cellβ and βT cellβ:
cell_types = bt.CellType.lookup()
my_subset = ln.Artifact.filter(
suffix=".h5ad",
description__endswith="subset",
cell_types__in=[
cell_types.hematopoietic_stem_cell,
cell_types.t_cell,
],
).first()
my_subset
Artifact(uid='Ep6xv3ztyEyspQQMx5oj', is_latest=True, description='anndata with obs subset', suffix='.h5ad', type='dataset', _accessor='AnnData', size=38992, hash='RgGUx7ndRplZZSmalTAWiw', _hash_type='md5', n_observations=20, visibility=1, _key_is_virtual=True, created_by_id=1, storage_id=1, transform_id=2, run_id=2, updated_at='2024-08-16 09:34:42 UTC')
Common questions that might arise are:
What is the history of this artifact?
Which features and labels are associated with it?
Which notebook analyzed and registered this artifact?
By whom?
And which artifact is its parent?
Letβs answer this using LaminDB:
print("--> What is the history of this artifact?\n")
artifact.view_lineage()
print("\n\n--> Which features and labels are associated with it?\n")
logger.print(artifact.features)
logger.print(artifact.labels)
print("\n\n--> Which notebook analyzed and registered this artifact\n")
logger.print(artifact.transform)
print("\n\n--> By whom\n")
logger.print(artifact.created_by)
print("\n\n--> And which artifact is its parent\n")
display(artifact.run.input_artifacts.df())
--> What is the history of this artifact?
--> Which features and labels are associated with it?
Features
'cell_type' = 'T cell', 'hematopoietic stem cell'
'disease' = 'chronic kidney disease', 'liver lymphoma'
'tissue' = 'kidney', 'liver'
Feature sets
'obs' = 'cell_type', 'tissue', 'disease'
Labels
.tissues = 'kidney', 'liver'
.cell_types = 'T cell', 'hematopoietic stem cell'
.diseases = 'chronic kidney disease', 'liver lymphoma'
--> Which notebook analyzed and registered this artifact
Transform(uid='eNef4Arw8nNM0000', is_latest=True, name='Analysis flow', key='analysis-flow.ipynb', type='notebook', created_by_id=1, updated_at='2024-08-16 09:34:37 UTC')
--> By whom
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at='2024-08-16 09:34:15 UTC')
--> And which artifact is its parent
uid | version | is_latest | description | key | suffix | type | _accessor | size | hash | _hash_type | n_objects | n_observations | visibility | _key_is_virtual | storage_id | transform_id | run_id | created_by_id | updated_at | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||||||
1 | XETSlnalM5QFSrmP7QMn | None | True | anndata with obs | None | .h5ad | dataset | AnnData | 46992 | IJORtcQUSS11QBqD-nTD0A | md5 | None | 40 | 1 | True | 1 | 1 | 1 | 1 | 2024-08-16 09:34:36.044536+00:00 |
Show code cell content
!lamin delete --force analysis-usecase
!rm -r ./analysis-usecase
Traceback (most recent call last):
File "/opt/hostedtoolcache/Python/3.10.14/x64/bin/lamin", line 8, in <module>
sys.exit(main())
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 367, in __call__
return super().__call__(*args, **kwargs)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1157, in __call__
return self.main(*args, **kwargs)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 152, in main
rv = self.invoke(ctx)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1688, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1434, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 783, in invoke
return __callback(*args, **kwargs)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamin_cli/__main__.py", line 171, in delete
return delete(instance, force=force)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/_delete.py", line 98, in delete
n_objects = check_storage_is_empty(
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/core/upath.py", line 776, in check_storage_is_empty
raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage /home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase/.lamindb contains 4 objects ('_is_initialized' ignored) - delete them prior to deleting the instance